Chers finalistes, préparez-vous pour le grand jour avec nos contenus !

Des items de toutes les options taillés sur mesure pour que vous prépariez mieux vos épreuves

Start learning
Equation logarithmique
Domaine Science Sous domaine Mathématiques
Section Scientifique Option Biologie Chimie
Discipline Mathématique Classe 6ème
Matériel didactique La voie Auteur SCHOOLAP.COM
Objectif opérationnel Au terme de la leçon, l’élève sera capable de définir une équation logarithmique et de la résoudre à l’aide de la formule des propriétés en 5 minutes.
Réference Maitriser les math 6/B, pp 85 -86.
Activité initiale

Rappel

Calculez : \(\frac{log⁡5-4 log⁡3+3 log⁡3+log⁡2}{log⁡4-log⁡2}\)

Rappel

\(\frac{log⁡5-log⁡3^4+log⁡3^3+log⁡2}{log⁡ \frac{4}{2}}=\frac{log⁡5+log⁡27+log⁡2-log⁡3^4}{log⁡4/2}\\ log\frac{\frac{5.27.2}{81}}{2}=\frac{\frac{270}{81}}{2}=log\frac{\frac{10}{3}}{2}=log\frac{10}{3}.\frac{1}{2}=log\frac{10}{6}\)

Motivation

Quel est l’exposant de ce logarithme ?

\(log_2⁡ (x+1) ?\)

Motivation

L’exposant de ce logarithme est x+1.

Que représente x+1 en algèbre ?

X+1 représente l’équation.

Annonce du sujet

Qu’allons-nous étudier aujourd’hui en math ?

Annonce du sujet

Aujourd’hui nous allons étudier les équations logarithmiques.

Activité principale

Qu’est-ce qu’une équation logarithmique ?

Equations logarithmiques

a. Définition : une équation logarithmique est toute équation où l’inconnue intervient dans l’expression du logarithme.

Comment peut-on résoudre une équation logarithmique ?

b. Résolution : Pour résoudre une équation logarithmique, on procède comme suit :

- poser les conditions d’existence des solutions de l’équation.

- Ramener éventuellement les logarithmes à la même base.

- utiliser les propriétés des logarithmes pour obtenir loga4  = logav  <=>  u = v.

- retenir les valeurs de l’inconnue qui vérifie les conditions posées ci-dessous 

Exemple : Résoudre dans IR, l’équation logarithmique suivante : log(x+1) =log32

Cp : x+1 ˃ 0

 <=>  x >  -1

] -1, +∞ [

log3(x+1)=log32  <=>  x+1 =2

                                        <=>  x = 2-1

                                                   X = 1

                                         S = {1}

 

Synthèse

Résoudre dans IR, les équations ci-dessous :

\(a. log_2⁡ (x+14)+ log_2⁡ (x+2) = 6\)

 

Condition : x+14 ˃ 0

                     x˃ -14

] -14, +∞ [

] -2, +∞ [

\(log_2⁡ (x+14)(x+2)=6 log_2 ⁡2\)

\(X²+2x+14x+28 = 64\)

\(X²+16x+28-64 = 0\)

\(=16²-4(1)(-36)\)

\(= 256+144\)

= 400

\(\sqrt[]{∆} = ±\sqrt[]{400}\)

= ±20

S = {2}    seul le réel 2 vérifie la condition posée.

Résoudre dans IR, l’équation suivante :

\(log_3⁡x= 1/2 + log_9 ⁡(4x+15)\)

X ˃ 0                           et      4x+15 ˃ 0

                                               X ˃ -15/4

]0, +∞[

] -15/4, +∞[

\(log_3 ⁡x = ½ log_3⁡ 3+log_3 2 (4x+15)\\ log_3 x=1/2 log_3 ⁡3+1/2 log_3 ⁡4x+15\\ 2log_3⁡ x = log_3⁡ 3 (4x+15)\\ log_3⁡ x^2 = log_3⁡ 12x+45\\ X²-12x-45 = 0\\ ∆ = 144-4(1)(-45)\\ = 144+180\\ \sqrt[]{∆} = ± \sqrt[]{324}\\ = ±18 \)

S = {15}